Source of Drinking Water

The sources of all drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

Where Do We Get Our Drinking Water?

We have two water sources. The first source is surface water from Lake Tawakoni. It is treated by means of sedimentation, filtration and disinfection to remove harmful contaminants. The water supplies the Cumby, Lone Oak and Cash areas south of Interstate 30. The second source is treated surface water purchased from North Texas Municipal Water District (NTMWD), which takes their raw water from Lake Lavon. This water supplies the Southeast Caddo Mills, Quinlan and Union Valley areas south of Interstate 30.

Source Water Assessment

The TCEQ completed an assessment of your source water and results indicate that some of your sources are susceptible to certain contaminants. The sampling requirements for your water system are based on this susceptibility and previous sample data. Any detections of these contaminants may be found in this Consumer Confidence Report. For more information on source water assessments and protection efforts at our system, contact Clay Hodges, General Manager, at (903) 883-2695.

All Drinking Water May Contain Contaminants

Drinking water, including bottled water, may reasonably be expected to contain

at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration regulations establish limits for contaminants in bottled water which must provide the same protection for public health. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (1-800-426-4791).

Lead And Drinking Water

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Cash Special Utility District is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead.

Cryptosporidium and Drinking Water

Cash Special Utility District and North Texas Municipal Water District both test the source water and treated water for the presence of cryptosporidium. Cryptosporidium (Crypto) is a microscopic organism that, when ingested, can result in diarrhea, fever and other gastrointestinal symptoms. Crypto comes from animal waste in the watershed and may be found in our source water. Crypto is eliminated by using a multi-barrier water treatment process including sedimentation, filtration and disinfection. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at 1 (800) 426-4791. Cryptosporidium has not been detected in any of our samples tested.

Unregulated Contaminants

Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted. Any unregulated contaminants detected are reported in this table. For additional information and data visit http://www.epa.gov/safewater/ucmr/ucmr2/index.html or call the Safe Drinking Water Hotline at (800) 426-4791.

Definitions

We routinely monitor for constituents in your drinking water according to Federal and State laws. In the tables on this page you might find terms and abbreviations you are not familiar with. To help you better understand these terms we've provided the following definitions:

 $\begin{array}{l} \mbox{Action Level (AL)} - \mbox{the concentration of a contaminant which, if exceeded, triggers} \\ \mbox{treatment or other requirements which a water system must follow.} \end{array}$

 $\begin{array}{l} \mbox{Action Level Goal (ALG)} - \mbox{the level of a contaminant in drinking water below which} \\ \mbox{there is no known or expected risk to health. ALGs allow for a margin of safety.} \end{array}$

ARA – annual running average

 $\label{eq:maximum contaminant Level (MCL) - the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.$

Maximum Contaminant Level Goal (MCLG) – the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MFL – million fibers per liter.

Maximum Residual Disinfectant Level (MRDL) - the highest level of a disinfectant

allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) – the level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. N/A – not applicable.

- ND not detected.
- NTU Nephelometric Turbidity Units.

Parts per billion (ppb) – micrograms per liter (μ g/l) or one ounce in 7,350,000 gallons of water.

Parts per million (ppm) – milligrams per liter (mg/l) or one ounce in 7,350 gallons of water.

Picocuries per liter (pCi/L) – a measure of radioactivity.

 $\mbox{Treatment}\mbox{Technique}\xspace(\mbox{TT})$ – a required process intended to reduce the level of a contaminant in drinking water.

90th Percentile – 90% of samples are equal to or less than the number in the chart.

Our Drinking Water Is Regulated

Cash Special Utility District is pleased to share this report with you. This report is a summary of the quality of the water we provide our customers. The analysis covers January 1 through December 31, 2016, and was made by using the data from the most recent U.S. Environmental Protection Agency (EPA) required tests and is presented in the attached pages. Cash Special Utility District's drinking water supply surpassed the strict regulations of both the State of Texas and the U.S. Environmental Protection Agency (EPA). We hope this information helps you become more knowledgeable about what's in your drinking water.

In 2016 our water department distributed 535,987,289 gallons of water to our customers.

For More Information About Cash Special Utility District

If you have questions about this report or concerning your water utility, please contact Clay Hodges, General Manager, by calling (903) 883-2695 or writing to: PO Box 8129, Greenville, TX 75404. You may also send email to cashwsc@ argontech.net. We want our valued customers to be informed about their water utility. You can attend public meetings on the fourth Monday of each month at 7 p.m. in the District Office at 172 FM 1564 East, Greenville, TX. Find out more on the Internet at www.cashwater.org.

En Español

Este informe incluye información importante sobre el agua potable. Si tiene preguntas o comentarios sobre éste informe en español, favor de llamar al tel. (903) 883-2695 – para hablar con una persona bilingüe en español.

Lead & Copper Rule Monitoring And Reporting

Cash Special Utility District has violated the monitoring and reporting requirements set by Texas Commission on Environmental Quality (TCEQ) in Chapter 30, Section 290, Subchapter F. Even though these were not emergencies, as our customers, you have the right to know what happened and what we are doing to correct this situation. We are required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. During June – September 2016 we did not complete all monitoring or testing for lead and copper and therefore cannot be sure of the quality of your drinking water during that time. Below is a list of the contaminants we did not properly test for during the year, how often we are supposed to sample for lead and copper, how many samples we are supposed to take, how many samples we took, when samples should have been taken, and the date on which the follow-up samples will be taken.

Contaminants	Required sampling	Number of samples taken	When samples should have been	When samples were or will be
	frequency		taken	taken
Lead	30 Samples every	29 out of 30	June-September	June-September
	three years		2016	2017
Copper	30 Samples every	29 out of 30	June-September	June-September
	three years		2016	2017

Cash Special Utility District Board of Directors

William C. Reese Vernon E. Pippin	President Vice President
James M. Fortenberry	Secretary/Treasurer
Bobby D. Ayers	Director
Staley J. Cash	Director
J. Kevin Chilcoat	Director
Bryan C. Delgado	Director
Craig Driggers	Director
Norris R. Mayberry	Director

2016 Annual Drinking Water Quality Report

2016 Monitoring Results

2016 Total Coliform Bacteria (# positive monthly samples)

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Voor	Contaminant	taminant Cash SUD NTMWD		/WD	MCI	MCLG	Source of Contaminant				
Ital	(Unit of Measure)		Highest	Range	Highest	Range	IVICE	WIGLU	00010	e or coman	inian
INORG	ANIC CONTAMINANTS	5							Frania	n of notural	danaaita, runaff from arabarda.
2016	Arsenic (ppb)		N/A	N/A	0.9	0.0 - 0.9	10	0	runoff	form glass a	and electronics production wastes
2016	Barium (ppm)		0.045 ¹	N/A	0.061	0.042 - 0.061	2	2	Discha metal	arge of drilliı refineries; e	ng wastes; discharge from rosion of natural deposits
2016	Chromium (ppb)		0.8 ¹	N/A	1.2	0.52 - 1.2	100	100	Discha	arge from st	eel and pulp mills;
2016	Fluoride (ppm)		0.091 ¹	N/A	0.93	0.13 - 0.93	4	4	Erosio tive w from f	n of natural hich promot fertilizer and	deposits; water addi- es strong teeth; discharge aluminum factories
2016	Nitrate (ppm)		0.453	0.386 - 0.453	0.79	0.05 - 0.79	10	10	Runof tanks	f from fertiliz	zer use; leaching from septic
2010	Beta/photon emitters	(pCi/L)	ND	N/A	4.4	4.4-4.4	50	0	Decay	of natural a	ind man-made deposits
Year	Contaminant (Unit of Measure)		Ca: Highest	sh SUD Range	NT Highest	MWD Range	MCL	MCLG	Sour	ce of Conta	minant
2016 2016	Atrazine (ppb) Simazine (ppb)		0.32 ND	ND - 0.32 N/A	0.61 ND	0.31 - 0.61 N/A	3	3	Runc	off from herb	icide used on row crops
Year	Contaminant (Unit of Measure) 9	Oth Percei	Cash SUD ntile Sites A	bove AL AL	Source of C	Contaminant					
LEAD A	ND COPPER	610		0 0 01	5 Corregion of	Ebouggbold pl	umbing ou	otomo: o	rogion	of potural d	oposito
2010		0.12			Corrosion of	f household pli	umbing sy umbing sv	stems: ei	is; erosion of natural deposits		
2016	Copper (ppm)	0.5309		0 1.3	deposits; lea	aching from w	ood prese	rvatives			
MAXIN	IUM RESIDUAL DISIN	Fectant L	EVEL								
Voor	Contaminant		Ca	sh SUD	NT	MWD			Cour	ion of Conto	minont
rear	(Unit of Measure)		Average	Range	Average	Highest	INIKUL	WINDLU	a 3001	ce of Conta	mmant
2016	Chlorine Residual (pp	om)	2.45	2.00 - 2.60	N/A	N/A	4.0	<4.0	Disinfectant used to control microbes		
2016	Chlorine Dioxide (ppn	n)	ND	N/A	0.0	0.0	0.8	0.8	Disinfectant		
2016	Chlorite (ppm)		ND	N/A	0.028	0.19	1.0	N/A	N/A Disinfectant		
TURBI	DITY										
Year	Contaminant	Highe	est Single Me	asurement	Lowest Mo	nthly % of Sar	nples Me	eting Lin	nits	Turbidity	Source of Contaminant
0.0.4.0	(Unit of Measure)	Ca	ash	NTMWD	Cas	h	NT	MWD		Limits	0
2016 NOTE: T	Urbidity (NTU)	U.	.31 er turbidity car	U.78	100'	% ovide a medium	for microbi	.20%	Turbidit	U.3	Soll runott
organisi	ns. These organisms incl	ude bacteria	i, viruses, and p	arasites that can	cause symptom	is such as nause	a, cramps,	diarrhea, a	and ass	ociated heada	ches.
Year	Contaminant		Ca	sh SUD	NT	MWD	MCL	MCLG SOL		Source of Contaminant	
TOTAL	(Unit of Measure)		Highest	Range	Highest	Range					
101AL	Source Water		7 20	4.05 7.20	4.55	214 455	N/A	NI/A			
2010	Drinking Water		3.85	2.19 - 3.85	2.81	1.48 - 2.81	N/A	N/A	Naturally present		in the environment
2016	Removal Ratio		1.46	1.16 - 1.46	63.9	25.7 - 63.9	N/A	N/A	N/A		
* Remover effects. elsewhe	al ratio is the percent of The disinfectant can com re in this report.	TOC remove bine with TC	ed by the treatn DC to form disir	nent process divic fection byproduc	led by the percents. Byproducts of	nt of TOC require	ed by TCEQ lude trihalo	to be rem methanes	oved. N (THM) a	OTE: Total org and haloacetic	ganic carbon (TOC) has no health acids (HAA), which are reported
Voor	Contaminant				Cash SU	D	Mel				surse of Contominent
rear	(Unit of Measure)				Level Detec	ted	MCL		N	ALLE SC	burce of Contaminant
MICRO	BIOLOGICAL CONTAN	MINANTS									

1 positive sample/month

0

0

Naturally present in the environment

2016	Total Trihalomethanes (ppb)	49. 59.	4	27.7 - 59	.5	80	N/A Byproduct of drinking water disinfection		
	Contaminant		Cash S	UD					
<i>l</i> ear	(Unit of Measure)	Hi	ghest	Range	MCL	MCLG	Source of Contaminant		
JNREG	ULATED CONTAMINANTS					1			
2016	Bromodichloromethane (ppb)		12.7	5.67 - 12.7	N/A	N/A	_		
2016	Chloroform (ppb)		50.7	ND 16 - 50 7	N/A	N/A N/A	Byproduct of drinking water disinfection		
2016	Dibromochloromethane (nnh)	`	27	107-27	Ν/Δ	Ν/Δ	-		
IOTE: E	Bromoform, chloroform, dichlorobromor	nethane, and di	bromochloromet	hane are disinfec	tion by-products.	There is no MCL	for these chemicals at the entry point to distribution.		
			II ATED (No a	seociated adv	arso health off	acte)			
Contaminant		Cash SUD		NTI		Secondary			
'ear	(Unit of Measure)	Highest	Range	Highest	Range	Limit	Source of Contaminant		
2016	Acetone (ppb)	ND	N/A	N/A	N/A	N/A	Natural process and human activities or vehicle exhaust, tobacco smoke, landfills and burning wast		
2016	Aluminum (ppm)	ND	N/A	N/A	N/A	0.05-0.2	Erosion of natural deposits; residue from some surface water treatment processes		
2016	Calcium (ppm)	21.31	N/A	85.2	30.7 - 85.2	N/A	Abundant naturally occurring element.		
2016	Chloride (ppm)	31 ¹	N/A	70.3	15.2 - 70.3	250	Abundant naturally occurring element; used in water purification; byproduct of oild field activity		
2016	Iron (ppm)	ND	N/A	0.02	ND - 0.02	0.3	Erosion of natural deposits; iron or steel water deli ery equipment or facilities.		
016	Magnesium (ppm)	2.08 ¹	N/A	6.65	5.85 - 6.65	N/A	Abundant naturally occurring element.		
016	Manganese (ppm)	0.00341	N/A	0.017	0.0005 - 0.017	0.05	Abundant naturally occurring element.		
016	Metolachlor (ppb)	0.21	N/A	N/A	N/A	N/A	Broad spectrum herbicide used for general weed control in noncrop areas		
016	Nickel (ppm)	0.0043 ¹	N/A	0.0041	0.0025 - 0.0041	0.1	Erosion of natural deposits.		
016	pH (units)	8.21	7.91 - 8.21	9.0	7.1 - 9.0	6.5-8.5	Measure of corrosivity of water.		
016	Potassium (ppm)	3.5 ¹	N/A	3.76	3.73 - 3.76	N/A	Runoff/leaching from natural deposits		
2016	Sodium (ppm)	18.3 ¹	N/A	77.4	26.8 - 77.4	N/A	Erosion of natural deposits; byproduct of oil field activity.		
016	Sulfate (ppm)	10.8 ¹	N/A	144	69 - 144	250	Naturally occurring; common industrial byproduct; byproduct of oil field activity.		
016	Total Alkalinity as CaCO3 (ppm)	76	N/A	117	60 - 117	N/A	Naturally occurring soluble mineral salts.		
016	Total Dissolved Solids (ppm)	135	N/A	556	194 - 556	1000	Total dissolved mineral constituents in water.		
016	Total Hardness as CaCO3 (ppm)	61.7	N/A	268	80 - 268	N/A	Naturally occurring calcium.		
2016	Zinc (ppm)	0.0051 ¹	N/A	0.013	ND - 0.013	5	Moderately abundant naturally occurring element used in the metal industry.		
/ear	Contaminant			NTMWD		Source	of Contaminant		
	(Unit of Measure)		Highest		Range	Source (
	ULATED CONTAMINANT MONIT((nnh)	2 (UCMR2) 0 0023		0-0.0023	Byproduy	ct of manufacturing process		
10TE: 1	Inregulated contaminants are those for	r which EPA ha	s not establishe	d drinking water	standards. The pl	Irpose of unregi	ulated contaminant monitoring is to assist EPA in determini		
he occi	irrence of unregulated contaminants in	n drinking wate	r and whether fu	iture regulations	are warranted.				
Result	is a single sample.								
	The state allows us to	monitor for s	ome contamir	nants less than	once per year	pecause the c	oncentrations of these contaminants		

Cash SUD

Range

26.4 - 49.5

Highest

49.5

MCL

60

MCLG

N/A

Contaminant

DISINFECTION BYPRODUCTS

(Unit of Measure)

2016 Total Haloacetic Acids (ppb)

Year

Source of Contaminant