Source of Drinking Water

The sources of all drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally
 occurring or result from urban stormwater runoff, industrial or domestic
 wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

Where Do We Get Our Drinking Water?

We have two water sources. The first source is surface water from Lake Tawakoni. It is treated by means of sedimentation, filtration and disinfection to remove harmful contaminants. The water supplies the Cumby, Lone Oak and Cash areas south of Interstate 30. The second source is treated surface water purchased from North Texas Municipal Water District (NTMWD), which takes their raw water from Lake Lavon. This water supplies the Southeast Caddo Mills, Quinlan and Union Valley areas south of Interstate 30.

Source Water Assessment

The TCEQ completed an assessment of your source water and results indicate that some of your sources are susceptible to certain contaminants. The sampling requirements for your water system are based on this susceptibility and previous sample data. Any detections of these contaminants may be found in this Consumer Confidence Report. For more information on source water assessments and protection efforts at our system, contact Clay Hodges, General Manager, at (903) 883-2695.

All Drinking Water May Contain Contaminants

Drinking water, including bottled water, may reasonably be expected to contain

at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration regulations establish limits for contaminants in bottled water which must provide the same protection for public health. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (1-800-426-4791).

Lead And Drinking Water

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Cash Special Utility District is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead.

Cryptosporidium and Drinking Water

Cash Special Utility District and North Texas Municipal Water District both test the source water and treated water for the presence of cryptosporidium. Cryptosporidium (Crypto) is a microscopic organism that, when ingested, can result in diarrhea, fever and other gastrointestinal symptoms. Crypto comes from animal waste in the watershed and may be found in our source water. Crypto is eliminated by using a multi-barrier water treatment process including sedimentation, filtration and disinfection. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at 1 (800) 426-4791. Cryptosporidium has not been detected in any of our samples tested.

Unregulated Contaminants

Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted. Any unregulated contaminants detected are reported in this table. For additional information and data visit http://www.epa.gov/safewater/ucmr/ucmr2/index.html or call the Safe Drinking Water Hotline at (800) 426-4791.

Definitions

We routinely monitor for constituents in your drinking water according to Federal and State laws. In the tables on this page you might find terms and abbreviations you are not familiar with. To help you better understand these terms we've provided the following definitions:

Action Level (AL) – the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Action Level Goal (ALG) – the level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety.

ARA - annual running average

Maximum Contaminant Level (MCL) – the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) – the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MFL - million fibers per liter.

Maximum Residual Disinfectant Level (MRDL) – the highest level of a disinfectant

allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) — the level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

N/A - not applicable.

ND - not detected.

NTU - Nephelometric Turbidity Units.

Parts per billion (ppb) – micrograms per liter (µg/l) or one ounce in 7,350,000 gallons of water.

Parts per million (ppm) – milligrams per liter (mg/l) or one ounce in 7,350 gallons of water

Picocuries per liter (pCi/L) – a measure of radioactivity.

Treatment Technique (TT) – a required process intended to reduce the level of a contaminant in drinking water.

90th Percentile - 90% of samples are equal to or less than the number in the chart.

PO Box 8129 Greenville, TX 75404

Our Drinking Water Is Regulated

Cash Special Utility District is pleased to share this report with you. This report is a summary of the quality of the water we provide our customers. The analysis covers January 1 through December 31, 2015, and was made by using the data from the most recent U.S. Environmental Protection Agency (EPA) required tests and is presented in the attached pages. Cash Special Utility District's drinking water supply surpassed the strict regulations of both the State of Texas and the U.S. Environmental Protection Agency (EPA). We hope this information helps you become more knowledgeable about what's in your drinking water.

In 2015 our water department distributed 539,535,807 gallons of water to our customers.

For More Information About Cash Special Utility District

If you have questions about this report or concerning your water utility, please contact Clay Hodges, General Manager, by calling (903) 883-2695 or writing to: PO Box 8129, Greenville, TX 75404. You may also send email to cashwsc@ argontech.net. We want our valued customers to be informed about their water utility. You can attend public meetings on the fourth Monday of each month at 7 p.m. in the District Office at 172 FM 1564 East, Greenville, TX. Find out more on the Internet at www.cashwater.org.

En Español

Este informe incluye información importante sobre el agua potable. Si tiene preguntas o comentarios sobre éste informe en español, favor de llamar al tel. (903) 883-2695 — para hablar con una persona bilingüe en español.

Cash Special Utility District Board of Directors

2015 Annual Drinking Water Quality Report

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Year	Contaminant	Cash	SUD	NTN	MWD	MCL	MCLG	Source of Contaminant
real	(Unit of Measure)	Highest	Range	Highest	Range	IVICL	MICLG	Source of Contaminant
INORG	ANIC CONTAMINANTS							
2015	Arsenic (ppb)	N/A	N/A	0.7	0-0.7	10	0	Erosion of natural deposits; runoff from orchards;
2010	/ tractile (ppb)	14/71	14/71	0.7	0 0.7	10		runoff form glass and electronics production wastes
2015	Barium (ppm)	0.045 ¹	N/A	0.55	0.039-0.55	2	2	Discharge of drilling wastes; discharge from
2010	Вапатт (рртт)	0.040	IV/A	0.00	0.000 0.00			metal refineries; erosion of natural deposits
2015	Chromium (ppb)	0.461	N/A	0.92	0.53-0.92	100	100	Discharge from steel and pulp mills;
2010	опотнат (ррь)	0.40	11/71	0.02	0.00 0.02	100	100	erosion of natural deposits
								Erosion of natural deposits; water addi-
2015	Fluoride (ppm)	0.116	0.68-0.78	0.86	0.25-0.86	4	4	tive which promotes strong teeth; discharge
								from fertilizer and aluminum factories
2015	Nitrate (ppm)	0.63	0.08-0.38	1.79	0.05-1.79	10	10	Runoff from fertilizer use; leaching from septic
2013	Mitate (ppin)	0.00	0.00-0.50	1.73	0.05-1.73	10	0 10	tanks, sewage; erosion of natural deposits
2010	Beta/photon emitters (pCi/L)	ND	N/A	4.4	4.4-4.4	50	0	Decay of natural and man-made deposits
	Contaminant	Cas	h SUD	NT	MWD			

Year	Contaminant	Cash SUD		NTN	NTMWD		MCLC	Source of Contaminant	
	(Unit of Measure)	Highest	Range	Highest	Range	MCL	IVICLU	Source or contaminant	
ORGAN	NIC CONTAMINANTS								
2015	Atrazine (ppb)	0.23 ¹	N/A	0.19	0.13-0.19	3	3	Dunaff frame hambicida usad an maur arang	
2015	Simazine (ppb)	ND	N/A	ND	N/A	4	4	Runoff from herbicide used on row crops	

Year	Contaminant (Unit of Measure)		SUD Sites Above AL	AL	Source of Contaminant
LEAD	AND COPPER				
2013	Lead (ppb)	5.19	1	15	Corrosion of household plumbing systems; erosion of natural deposits
0010	Cannar (nam)	0.309	0		Corrosion of household plumbing systems; erosion of natural
2013	Copper (ppm)				deposits; leaching from wood preservatives

MAXIN	MAXIMUM RESIDUAL DISINFECTANT LEVEL										
Voor	Contaminant	Cash SUD		NTMWD		MRDL	MDDI G	Source of Contaminant			
Year	(Unit of Measure)	Average	Range	Average	Highest	MINDL	MINDLG	Source of Contamilant			
2015	Chlorine Residual (ppm)	2.17	1.6-2.4	N/A	N/A	4.0	<4.0	Disinfectant used to control microbes			
2015	Chlorine Dioxide (ppm)	ND	N/A	0	0.03	0.8	0.8	Disinfectant			
2015	Chlorite (ppm)	ND	N/A	0.03	0.33	1.0	N/A	Disinfectant			

	URBIE	DITY						
_	'ear	Contaminant	Highest Single	Measurement	Lowest Monthly % of S	Samples Meeting Limits	Turbidity	Source of Contaminant
	eai	(Unit of Measure)	Cash	NTMWD	Cash	NTMWD	Limits	Source or Comaminant
2	2015	Turbidity (NTU)	0.31	1	100%	99%	0.3	Soil runoff
_ N	IOTE. T	Contribution from the parties of the	And I have a company to the balleting	and the same and the salt	allafa attala anad anad dala a na adti-	an fact and analysis I have take Tradelets	L	the conservation of discours and discourse

NOTE: Turbidity has no health effects. However, turbidity can interfere with disinfection and provide a medium for microbial growth. Turbidity may indicate the presence of disease-causing organisms. These organisms include bacteria, viruses, and parasites that can cause symptoms such as nausea, cramps, diarrhea, and associated headaches.

Contaminant	Cash SUD		NTMWD		MCI	MCLC	Source of Contaminant	
(Unit of Measure)	Highest	Range	Highest	Range	IVICL	MICLG	Source of Contaminant	
ORGANIC CARBON								
Source Water	10.4	6.04-10.4	7.6	3.82-7.6	N/A	N/A	Naturally present in the environment	
Drinking Water	3.98	3.56-3.58	6.32	1.45-6.32	N/A	N/A		
Removal Ratio	66.2%	39.2-66.2%	62%	21.9-62%	N/A	N/A		
	(Unit of Measure) ORGANIC CARBON Source Water Drinking Water Removal Ratio	(Unit of Measure) Highest ORGANIC CARBON Source Water 10.4 Drinking Water 3.98 Removal Ratio 66.2%	(Unit of Measure) Highest Range ORGANIC CARBON 8 10.4 6.04-10.4 Drinking Water 3.98 3.56-3.58 Removal Ratio 66.2% 39.2-66.2%	(Unit of Measure) Highest Range Highest ORGANIC CARBON Source Water 10.4 6.04-10.4 7.6 Drinking Water 3.98 3.56-3.58 6.32 Removal Ratio 66.2% 39.2-66.2% 62%	(Unit of Measure) Highest Range Highest Range ORGANIC CARBON Source Water 10.4 6.04-10.4 7.6 3.82-7.6 Drinking Water 3.98 3.56-3.58 6.32 1.45-6.32	(Unit of Measure) Highest Range Highest Range MCL ORGANIC CARBON Source Water 10.4 6.04-10.4 7.6 3.82-7.6 N/A Drinking Water 3.98 3.56-3.58 6.32 1.45-6.32 N/A Removal Ratio 66.2% 39.2-66.2% 62% 21.9-62% N/A	(Unit of Measure) Highest Range Highest Range MCL MCLG ORGANIC CARBON Source Water 10.4 6.04-10.4 7.6 3.82-7.6 N/A N/A Drinking Water 3.98 3.56-3.58 6.32 1.45-6.32 N/A N/A Removal Ratio 66.2% 39.2-66.2% 62% 21.9-62% N/A N/A	

* Removal ratio is the percent of TOC removed by the treatment process divided by the percent of TOC required by TCEQ to be removed. NOTE: Total organic carbon (TOC) has no health effects. The disinfectant can combine with TOC to form disinfection byproducts. Byproducts of disinfection include trihalomethanes (THM) and haloacetic acids (HAA), which are reported elsewhere in this report.

	Voor	Contaminant	Cash SUD	MCL	MCLG	Source of Contaminant	
Year	tai	(Unit of Measure)	Level Detected	IVICL	IVICLG	Source of Contaminant	
Ν	/ICRO	BIOLOGICAL CONTAMINANTS					
2	2015	Total Coliform Bacteria (# positive monthly samples)	0	1 positive sample/month	0	Naturally present in the environment	

Year	Contaminant	Cash	SUD	MCI	MCLG	Source of Contaminant
	(Unit of Measure)	Highest	MCL	MICLG	Source of Contaminant	
DISINF	ECTION BYPRODUCTS					
2015	Total Haloacetic Acids (ppb)	50.1	17.4-50.1	60	N/A	Byproduct of drinking water disinfection
2015	Total Trihalomethanes (ppb)	70.1	21.1-70.1	80	N/A	byproduct of drinking water distillection

PWS ID# 1160018

Voor	Contaminant	Cash	SUD	MCL	MCLG	Source of Contaminant	
Year	(Unit of Measure)	Highest	Range	IVICL	MICLG	Source of Contaminant	
UNREC	GULATED CONTAMINANTS						
2015	Bromodichloromethane (ppb)	15.4	8.6-15.4	N/A	N/A		
2015	Bromoform (ppb)	ND	ND	N/A	N/A		
2015	Chloroform (ppb)	61.3	9.2-61.3	N/A	N/A	Byproduct of drinking water disinfection	
2015	Dibromochloromethane (ppb)	4.04	2.01-4.04	N/A	N/A		

NOTE: Bromoform, chloroform, dichlorobromomethane, and dibromochloromethane are disinfection by-products. There is no MCL for these chemicals at the entry point to distribution.

Year	Contaminant	Cash	SUD	NTN	/IWD	Secondary	Course of Conteminent
rear	(Unit of Measure)	Highest	Range	Highest	Range	Limit	Source of Contaminant
2015	Acetone (ppb)	ND	N/A	N/A	N/A	N/A	Natural process and human activities or vehicle exhaust, tobacco smoke, landfills and burning waste
2015	Aluminum (ppm)	0.00471	N/A	N/A	N/A	0.05-0.2	Erosion of natural deposits; residue from some surface water treatment processes
2015	Calcium (ppm)	23.9 ¹	N/A	113	45.3-113	N/A	Abundant naturally occurring element.
2015	Chloride (ppm)	38.8 ¹	N/A	142	16.1-142	250	Abundant naturally occurring element; used in water purification; byproduct of oild field activity.
2015	Iron (ppm)	ND	N/A	<0.02	0-0	0.3	Erosion of natural deposits; iron or steel water delivery equipment or facilities.
2015	Magnesium (ppm)	2.691	N/A	9.36	3.22-9.36	N/A	Abundant naturally occurring element.
2015	Manganese (ppm)	0.00871	N/A	0.011	0.0014- 0.011	0.05	Abundant naturally occurring element.
2015	Metolachlor (ppb)	0.21	N/A	N/A	N/A	N/A	Broad spectrum herbicide used for general weed control in noncrop areas
2015	Nickel (ppm)	0.0016 ¹	N/A	0.0065	0.0028- 0.0065	0.1	Erosion of natural deposits.
2015	pH (units)	8.09	N/A	9.884	6.75-9.884	6.5-8.5	Measure of corrosivity of water.
2015	Potassium (ppm)	4.26 ¹	N/A	N/A	N/A	N/A	Runoff/leaching from natural deposits
2015	Sodium (ppm)	24.41	N/A	76.7	53.2-76.7	N/A	Erosion of natural deposits; byproduct of oil field activity.
2015	Sulfate (ppm)	9.66¹	N/A	117	110-117	250	Naturally occurring; common industrial byproduct; byproduct of oil field activity.
2015	Total Alkalinity as CaCO3 (ppm)	88.6	N/A	154	38-154	N/A	Naturally occurring soluble mineral salts.
2015	Total Dissolved Solids (ppm)	186	N/A	620	158-620	1000	Total dissolved mineral constituents in water.
2015	Total Hardness as CaCO3 (ppm)	136.6	N/A	300	100-300	N/A	Naturally occurring calcium.
2015	Zinc (ppm)	0.0031	N/A	0.004	ND-0.004	5	Moderately abundant naturally occurring element used in the metal industry.

Voor	Contaminant	NTM	1WD	Source of Contaminant						
Year	(Unit of Measure)	Highest	Range	Source of Contaminant						
UNREG	UNREGULATED CONTAMINANT MONITORING RULE 2 (UCMR2)									
2009	N-nitrosodimethlyamine (NDMA) (ppb)	0.0023	0-0.0023	Byproduct of manufacturing process						
NOTE: I	NOTE: Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining									

Result is a single sample.

the occurrence of unregulated contaminants in drinking water and whether future regulations are warranted.

The state allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though accurate, is more than one year old.